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Homework Assignment #7 

 

Introduction: 
 This homework project will serve as the only foray into 3D finite element formulations of statically 

loaded structures. Because of the complexity of this homework project, only the 3D mesher will be 

programmed in MATLAB; the rest of the work for the finite element solution will be presented in a 

theoretical manner. 

 3D finite element formulations are the cornerstone of the finite element industry and serve as the 

validation method for the majority of 3D structures in production today. Because displacement is an 

unknown 3D vector, there are three unknowns per node. With 8 nodes per element in the most basic 

formulations, this leads to 24 unknowns per element. As one can imagine, the sheer size of the final 

stiffness matrix becomes almost unbearable without domain decomposition or iterative solvers. This 

makes implementation difficult for even a graduate level class; consequently, only the outline of 

implementation for 3D will be presented here.  

 

Objectives: 
In this homework we have only one programming challenge: to implement a three dimensional 

mesher for the given pipe structure and construct the connectivity map matrix. Our mesher will be 

constrained to making these pipe shapes with various radii and lengths, primarily because full three 

dimensional meshers that can take on _any_ shape are licensed at several dozens of thousands of dollars 

per year. However, even this simple pipe shape is not as easy as one might think. The Findings section will 

present the mesher that I have implemented. 

The rest of the homework will  lay out a complete framework for the finite element formulation in 

three dimensions. The instructions are to: 

 Develop the weak form for the stress equation presented in the homework. 

o Define the approximation function spaces. 

 Develop the weak form with the penalty method as well. 

o Define the approximation function spaces. 

 Define the stiffness matrices and load vectors explicitly in terms of trilinear basis functions, 

material properties, and loading functions. 

o Describe how the global stiffness matrix and load vectors are assembled from the 

element matrices (step by step). 

 Do the same as above but for the Penalty method formulation. 

o Be explicit about the loading on surface elements versus the loading on entire 

element bodies. 



 Indicate how to solve the problem with the implemented mesh generator and its output. 

Estimate the Galerkin Subspatial error in the solution, especially how to determine the 

constants. 

 Characterize the geometric error as a function of Nr, N_theta, Ns. 

 If one used the conjugate gradient solver, how many operations would be needed for Nr, 

N_theta, Ns? 

 Consider the time transient case 

o Develop the weak form for: 

 Implicit finite difference for the time 

 Explicit finite difference for the time 

 Explicit finite difference for the time + lumped mass approximation 

 

As one can see, that is a lot of work. The “Analytical” section will outline all of the analytical work, 

and the “Implementation” section will show the mesher. 

 

Analytical: 

Weak Form: 

First, we define the loading function as: 

 

Which gives us our starting equation of: 

 

We define the stress to further simplify: 

 

Obtaining: 

 

Test function: 

 

Integrate: 

 

Use the equivalent of the “trick” in 3D space: 



 

To obtain: 

 

Then use the divergence theorem on the first term to obtain: 

 

Rearrange to obtain the weak form: 

 

And we can reverse substitute to obtain: 

 

Also, noting the more general form of traction forces and body loading forces, we obtain the following by 

substituting for the stress dot normal term: 



 

Which is effectively Equation 9.1 from the reader, also known as the general form. 

Approximation Spaces :  

 We also must take care to define the approximation function spaces for this formulation. In 

particular, we must define the restrictions upon the set of functions within the weak form that we have 

derived. These three restrictions govern the selection: 

 

 Where we use the equals sign for a relation, rather than the strict equality it implies. We now switch 

to Hilbertian Sobolev spaces to denote the restrictions upon the solution, traction, and test function. In 

summary, belonging to an H^1 function space simply denotes: 

 

Thus, our restriction on the force and traction functions becomes: 

 

And our stress and function restrictions become: 



 

And the restriction on the test function and solution with boundary conditions: 

 

Essentially, we want to find a test function inside H^1 that is 0 at the boundary where the displacement is 

specified. Likewise, we want to find a solution also in H^1 that is the specified value at the boundary. 

 

Weak Form with Penalty Method: 

The addition of the Penalty term: 

 

Into the weak form gets split up on both sides and becomes: 

 

As expected from the earlier penalty term formulation in Homework #6. We can reverse substitute the 

stress and normal term to obtain this from the reader: 

 

 

Approximation Spaces with Penalty Method:  



 Now with the penalty method, we must again choose the space of approximation functions for the 

Pstar value over the boundary. Our formulation also changes because the restrictions on v and u change, 

primarily because v now exists everywhere and u has no restrictions: 

 

 This change is an immediate advantage of the penalty method. The solution u exists everywhere 

without restriction (but is forced into the displacement condition by the added stiffness at those nodes), 

and the test function also exists everywhere and will not reduce the size of the overall stiffness matrix. The 

other restrictions from the earlier approximation spaces section still hold however. 

 Finally, just to clarify on Pstar, it exists at the displacement boundary and is zero elsewhere: 

 

Stiffness Matrices, Load Vectors, etc: 

 The tricky thing with the 3D formulation of the finite element method is that each traditional matrix 

gets expanded because of the addition of two dimensions. These expansions can be difficult to keep track 

of, and consequently the explicit formulations for the stiffness matrices, load vectors, material properties, 

and loading functions are explained below. 

 Additionally, all of the basis functions and evaluations must be mapped into the zeta domain for 

Gaussian integration. This means that the chain rule must be applied to map all of the derivative terms of 

the shape functions, and deformation gradients (as well as Jacobians) will now appear throughout the 

integral. This is shown in the second half. 

 Starting again with the previous formulation: 

 

We can substitute in the expressions for v and u to obtain the following in matrix form 



 

Where the 6x3 D deformation tensor is defined as: 

 

And the vectors: 

 

The 3x24 phi matrix is defined as the following: 



 

Further recognizing that the phi functions have associated A and B coefficients for the v and u functions 

gives us: 

 

 

Next, these functions must be transformed into the zeta world. In order to do this, we first introduce the 

deformation gradient: 

 

Thus the following mapping can be defined: 

 

With this mapping, the partial derivatives of the deformation tensor must be mapped. The first column 

becomes: 



 

The rest of the columns are mapped with the chain rule in a similar manner. The full expressions can be 

viewed on Page 81 of the reader. 

The 3x24 phi matrix then becomes: 

 

The phi functions are defined by the Lagranian Polynomials. They can also be defined by taking all the 

plane intersection equations that do not contain the node in equation. For example, phi_1 is defined as: 

 

The rest of the phi function definitions can be viewed on page 79 of the class reader. 

Thus, our stiffness integral becomes: 

 

Thus we can finally expression our stiffness matrices and load vectors in terms of a Gaussian summation 

over the zeta domain: 



 

And with Penalty Term: 

 

Where the Fs is the surface Jacobian for the traction term. 

We can also express the loading vector now with a Gaussian summation: 

 

And with penalty term: 

 

 



 

Finally, we have an expression for both the right hand and left hand side of the Ka=R equation. 

Lastly, we must remember to map the material properties correctly: 

 

And the traction loading term: 

 

 

Assembly Steps: 

After doing a triple summation 9-point Gaussian integration, we will obtain a 24x24 matrix for the stiffness 

matrix: 

 

This 24x24 matrix corresponds to the 24 unknowns per element (3 per 8 nodes): 

 

Similarly, the R loading vector corresponds to the loading at each node in each direction: 



 

However, each of these per-element vectors must be assembled into their corresponding global vectors. 

For this, we must use the connectivity map in order to assemble each individual piece correctly. Flow 

Chart for stiffness assembly: 

 

Code Layout: 

 For each row 

o For each column 

 Obtain the local stiffness value at this row and column. 



 Use the connectivity map to determine which global node this local node 

corresponds to 

 Determine the global row and column based on this connectivity information 

 Add this local stiffness value to the global stiffness matrix 

o End for 

 End for 

Assembly for R vector: 

 The R vector is assembled in a similar way, except for all assembly only happens in one dimension: 

 

 

Code Layout: 

 For each row 

 Obtain the local loading value at this ro. 

 Use the connectivity map to determine which global node this local node 

corresponds to 

 Determine the global row based on this connectivity information 

 Add this local loading value to the global loading vector 

 End for 

 

The mesher section of this report will further detail the exact dimensions and information stored in 

the connectivity map matrix. 

 

 



 

Penalty Method, Loading, and Surface Integrals: 

 It is important to note what each term in the right hand side represents. Going back to the Gaussian 

integration form in the zeta domain: 

 
 

 The first term: 

 
 represents the three dimensional integral of the loading force over the volume of the element. This 

integral will apply to every element; it may be zero for some elements if the loading force is zero at those 

locations, but this integral is fundamental to the finite element method. 

 To evaluate this expression, we vary zeta1, zeta2, and zeta3 over their entire ranges to capture all 

the behavior of the density and loading functions throughout the volume integral. 

 

 The second term: 

 
 represents any traction loading terms on the surface of the integral. This integral only exists on 

surfaces of elements; consequently, it uses the Surface Deformation Gradient. This translates into the 

surface jacobian when the determinant is evaluated. 

 This expression is evaluated by fixing one of the zeta values. By fixing one of the zeta values to 

either +1 or -1, we will essentially evaluate this integral along one side of the master cube element. This 

side should be the size where this traction loading force exists. This expression will be zero for all 

elements that do not have a surface on the outside of the structure. For those that do have a surface on 

the outside of the structure, this expression will be evaluated for every side of the element that contains a 

traction loading term. 



 Furthermore, I would like to note that if we had any line traction loading, a very similar expression 

would be produced that only has one Gaussian summation. This would essentially be an integral along a 

line of the master cube element. Point loading is also possible as well, where the expression just simplifies 

to one evaluation at a node. These types of loading can be found in popular CAD and FEM software. 

 

 Lastly, the penalty term: 

 
 also exists only on surfaces where there is a specified displacement. It is zero elsewhere. This 

expression will be zero for all elements that do not share a surface where the displacement is specified. 

Please note that there could be specified displacements within a structure if needed, so the exterior / 

interior differentiation is no longer made. 

 

Total Solution: 

 Now that we have expressions for every part of the 3D finite element formation, we are ready to 

solve. The overflow outline is below: 

 For every element: 

o Compute the stiffness matrix 

 Use the triple summation expression given above 

 If these nodes have a specified displacement and we are using the penalty method, 

make sure to include that double summation term as well 

o Compute the loading vector 

 This involves two expressions: 

 The loading force triple summation over the volume 

 The traction force double summation over the surface 

 And a possible third term of the penalty 

 The penalty double summation over the surface with the specified 

displacement. Here, the actual displacement value is used to multiply against 

Pstar 

o Assemble the stiffness matrix into the global stiffness matrix 

 This can be done with the algorithm I outlined above 

o Assemble the loading vector in a similar manner 

 Finally, if you are not doing the penalty term: 

o Eliminate the rows of the stiffness matrix that correspond to specified displacements 

o Take the corresponding columns and multiply them by the specified displacement vector 

and move to the right hand side 

 Solve the Ka=R problem: 

o Either take the inverse of the global stiffness matrix (bad idea) or: 

o Use a preconditioned conjugate gradient solver 



 Once the displacements for each node are known, post process for the stress: 

o Calculate the dimensionless strain with: 

 

 

o Multiply this by the material properties to get the stresses: 

 

 

After this, we have now solved for each stress and strain at each node. We can display these stresses and 

strains with fancy color plots if needed. 

 

Galerkin Subspatial Error: 

We are also interested in the error of our solution. First we define our error norm as: 



 

 Thus, we can define the error of our solution as: 

 

 where p is the polynomial order of our basis functions (which will be just one [linear] for our 

formulation in this homework project). R is the regularity of the solution, and C is a constant that is 

dependent on the actual problem. We would like to determine the C constant however (the p is already 

known of course) and the gamma constant. Here, the h is obviously the element size like in 1D. In order to 

find C, make one coarse mesh and the another successively finer mesh and apply the following steps: 

 

Then solve for C: 

 

For the gamma constant: 

 

Then a simple logarithmic operation can be performed to obtain gamma. 

 

Geometric Error: 

The geometric error as a function of the element division parameters: 

 



Essentially equates to finding the three constants in the reduction in error over three successively finer 

meshes: 

 

And then finding the zeta to monitor the error: 

 

This can be done three separate times, refining the mesh with only one parameter each time. Then 

the three different constants that represent the error can be determined. 

CG Operations: 

As discussed in class, conjugate gradient operations perform on the order of: 

 

 Where K is the condition number of the matrix and M here is the number of degrees of freedom in 

the problem. Assuming we can get the condition number of our matrix down to around 1, the conjugate 

gradient operates with respect to the number of degrees of freedom in the problem. This is essentially the 

number of unknowns in the problem, which is three per node. If there are 8 nodes per element… 

 

 Hence, about 24 * M iterations to obtain a solution within tolerance. This is assuming 

preconditioning however.  I omitted the P above for clarity. 

 

Mesher Implementation: 

 
 Constructing the 3D mesh of the pipe structure was surprisingly easy once an elegant algorithm 

was constructed. The implementation of this algorithm will be outlined below: 

 

Algorithm Overview: 



The overall format of the algorithm is simple: 

 

 
 

 

 First, the centerline points of the pipe (along with the angle of rotation) is generated. 

o These centerline points describe the rotation and position of each pipe cross section. 

 Next, pipe cross sections are generated with the arch mesher from Homework #6 set to a full circle.  

o These pipe cross sections are all identical before rotation and displacement. 

 Finally, these pipe cross sections are combined with the x and y centerline points to construct the 

full three dimensional mesh. 

o These is achieved by a two step process. 

 First, the pipe slice is rotated by an angle of 1-theta about the y axis. This effectively 

rotates the pipe cross section to the correction orientation. This is achieved with a 

rotation matrix. 

 The pipe cross section is then translated with homogenous coordinates and a 

translation matrix to the correct location. 

 

Algorithm Details: 

 

Cross Section Generator 

 

 The pseudo code and full implementation of the arch mesher (including the circle configuration) is 

specified in Homework #6. I will refer to this homework in order to determine how to generate the pipe 

cross sections. The main difference is that the end angle theta has to be set to 2*pi, which will both wrap 

the arch completely around in a circle and perform the connectivity at the seam. The rest is the same. 

 

Centerline Point and Theta Generator 

 

 The centerline point generator essentially finds the x and y points along a circle of a certain radius 

of curvature. If these points are below zero, they are shifted over, because the pipe we are generating is 

essentially a circle with one half displaced by the diameter. 

 

Pseudo Code: 



 
Given: the radius of curvature and the s_step amount: 

 

Generate an angle vector from –pi to pi, stepping by s_step 

 

For I=1:length(angleVector): 

   xPointHere = radius_curvature * cos(angleVector[i]) 

 

     if sin(thisAngle) > 0 

If the sin is above zero, we are now at the second half of the 

pipe 

Thus, displace x by 2 * radius_curvature 

X = x + 2*radius_curvature 

     Endif 

  Endfor 

 

  Loop through each x point: 

   If(x[i] <= radius_curvature): 

    Calculate the y = sqrt(radius_curvature^2 – x^2) 

    Theta = atan(y / x) 

    Fix theta if positive or 0 

   Else: 

    Y = sqrt(radius^2-(radius*2-x)^2) 

    Theta = atan(y / (radius*2-x)) 

   Endif 

  Endloop 

  

Cross Section Rotations and Displacements 

 

 The cross section rotator essentially just rotates and displaces every pipe cross section to the 

desired location. It also generates the connectivity map by looping through each element. The matrices 

used are detailed blow: 

 

Rotation matrix: 

 
 

Translation matrix (Homogenous Coordinates): 

 



 
 

Pseudo Code: 

 
Given: the r_step, theta_step, s_step values 

 

Slices = GENERATE_ALL_CROSS_SECTIONS() 

 

Points = GET_CENTERLINE_POINTS() 

 

Loop through EACH SLICE: 

 For this slice, get the rotation amount: 

 rotAmount = 2 * pi – thetaAtSlice 

 

 Construct the rotation matrix in the y direction: 

 

 Construct the translation matrix for the x and z amounts. 

 

 For every point in cross section: 

  Put into homogenous coordinates 

  Rotate by matrix 

  Translate by matrix 

  Save result 

 Endfor 

Endloop 

 

For every element in entire mesh: 

LLnode is sideCounter + (sliceCounter-1)*(numElementsInSlice+1) + 

(sCounter-1)*(numPointsInSlice) 

LR = LL + 1 

 

Rest of lower nodes are calculated in a similar matter 

 

For upper nodes: simply add the numPointsInSlice amount 

 

Draw this element’s connectivity with lines 

 

Save these node numbers into the connectivity map 

 

endfor 

Data Structure Results 



 The above code outputs two data structures: the connectivity map matrix and the global node 

coordinate matrix. 

 The connectivity map essentially relates the local node numbers to the global node numbers for 

each element. Hence, it has M element rows and has 8 columns for 8 of the each nodes in our trilinear 

approximation functions. A symbolic representation: 

 

Connectivity Map 

Row Col1 Col2 Col3 … Col8 

Element 1 Global node - LLL Global node - LLR Global node - LUR … Global Node – UUL 

Element 2 Global node - LLL Global node - LLR Global node - LUR … Global Node – UUL 

Element 3 Global node - LLL Global node - LLR Global node - LUR … Global Node – UUL 

…      

Element 
M 

Global node - LLL Global node - LLR Global node - LUR … Global Node - UUL 

  

And the definition of the naming convention: 

 

Letter Zeta Value Letter Zeta Value 

L__ z3 = -1 U__ z3=+1 

_L_ z1 = -1 _U_ z2=+1 

__L z1 = -1 __R z1=+1 

 

A sample from the first mesh given below: 

 

Connectivity Map 

Element Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 

1 1 2 5 4 34 35 38 37 

2 2 3 6 5 35 36 39 38 

3 4 5 8 7 37 38 41 40 

4 5 6 9 8 38 39 42 41 

5 7 8 11 10 40 41 44 43 

 

 The globalToCoordinate Matrix simply maps each node number to a position vector with x, y, and 

zeta values. A symbolic representation: 

Global Node to Coordinate Matrix 

 X Y Z 

Node 1 X1 Y1 Z1 

Node 2 X2 Y2 Z2 

Node 3 X3 Y3 Z3 

Node 4 X4 Y4 Z4 

… … … … 



Node N XN YN ZN 

 

 A sample from the first mesh given below: 

 

Global Node to Coordinate Matrix 

 X Y Z 

Node 
1 

-8 0 0 

Node 
2 

-7.5 0 0 

Node 
3 

-7 0 0 

Node 
4 

-
8.38197 

1.175571 0 

Node 
5 

-
7.97746 

1.469463 0 

Node 
6 

-
7.57295 

1.763356 0 

 

  

Mesher Findings 
 

 I am quite proud of the mesher that I have implemented. It is quite flexible and can be used to 
produce pipe meshes with various radii of curvature, inner and outer radii, end and start locations, and 
division parameters. Furthermore, because this algorithm uses my homework #6 algorithm for arch 
meshes, it can also generate “arch pipes” where there is a lengthwise section of the pipe missing. 

 Regardless, below are my plots for each mesh. 

 

 For this mesh, the node locations are shown with a star and the element connectivity is shown with 
lines:  

 



 

 

For this mesh, only element connectivity is shown, for the star plotting became visually obstructive:  



 

 

 Finally, for this plot, there are essentially 128,000 lines being drawn (for all the element 
connectivity) and thus the plot is difficult to see. The hollow center section can be seen though: 



 

 

Time-Transient Case 

 
First, we will define the time transient case for the IMPLICIT formulation. The important thing to 

note here is that the expression will get somewhat ugly because of the second derivative, so we will define 

this term: 

 
 Then taking this equation: 

 
 



 We use a finite difference to approximation the second derivative like in Homework 5, which I 

will refer to for a more rigorous derivation of the finite difference for a time derivative. The 

expression then yields (after solving for u + delta t): 

 
 

 For the explicit version, we simply move all the evaluated terms back one timestep to obtain a 

simpler equation to evaluate: 

 

 
 

 For the lumped mass approximation, we will ignore the deformation of the element and instead 

use a diagonal mass matrix. This is essentially equivalent to dropping the first derivative term (I think): 

 

 

Discussion 
  

 This homework was quite length, and in order to save the reader’s time and a small fraction of some 

tree, I will omit the typical length discussion at the end of the report. In conclusion, this homework gave me 

a very in-depth summary of the finite element formulation in three dimensions and all of the aspects to 

consider when choosing approximation functions, implementing the formulation, post-processing, and 

deriving the weak form. This will be good preparation for the final and perhaps a career in FEM software. 

 

APPENDIX: 



 Like in homework #1, the raw data for the above figures is not provided here but can be provided 

upon request. It is also quite easily generated from the included matlab code below.  
 

function [ gNodeToCoord, connectMap ] 

= 

archMesher(r_step,theta_step,s_step,s

houldPlot,big_radius) 
r_end = 3; 
r_begin = 2; 
r_range = r_end-r_begin; 
theta_begin = 0; 
theta_end = 2*pi; 
theta_range = theta_end-theta_begin; 
s_begin = 0; 
s_end = 2*pi; 
s_range = s_end-s_begin; 
numPoints = (theta_range/theta_step + 

1) * (r_range/r_step + 1) * 

(s_range/s_step+1); 
gNodeToCoord = zeros(numPoints,3); 
coordNum = 1; 
if(shouldPlot) 
    close all 
    figure(1) 
    hold on 
    axis([-2*big_radius 2*big_radius 

-2*big_radius 2*big_radius -

2*big_radius 2*big_radius]) 
end 
for s=s_begin:s_step:s_end 
    for 

theta=theta_begin:theta_step:theta_en

d 
        for r=r_begin:r_step:r_end 
            %get the x 
            x = r*cos(theta); 
            y = r*sin(theta); 

             
            z = 0; %z is default zero 

for now, we will translate and rotate 
            %later 

             
            gNodeToCoord(coordNum,1) 

= x; 
            gNodeToCoord(coordNum,2) 

= y; 
            gNodeToCoord(coordNum,3) 

= z; 
            coordNum = coordNum + 1; 
        end 
    end 
end 
%ok now we have generated each slice 

of the entire thing, but they are all 
%still on top of each other! we need 

to rotate and translate each one :P 

 

disp 'Hi!' 

  
shouldplot = true; 

  
N_theta = 10; 
N_r = 2; 
N_s = 20; 

  

  
big_radius=10; 

  
r_step = 1/N_r; 
theta_step = 2*pi/N_theta; 
s_step = 2*pi/(N_s); 

  
[gNodeToCoord, connectMap] = 

archMesher(r_step,theta_step,s_step,shouldpl

ot,big_radius); 

  
%plotting should be done... 
function [ x,ys,theta ] = 

getPosOnArch(big_radius,s_step,should_plot) 
%GETPOSONARCH Summary of this function goes 

here 
%   Detailed explanation goes here 
%first, if x is less than 2*big_radius... 
total_length = 3*big_radius; 
%cant divide up the x's like this, we need 

another way 
daAngle = [-pi:s_step:pi]; 
x = zeros(max(size(daAngle)),1); 
for i=1:length(daAngle) 
    thisAngle = daAngle(i); 
    thisX = big_radius*cos(thisAngle); 

     
    if(i > 1) 
        if(sin(thisAngle) > 0) 
            thisX = thisX + 2*big_radius; 
        end 
    end 
    x(i) = thisX; 
end 
atHalf = round(length(x)/2); 
x(end) = x(end) + 2*big_radius; 
temp = x(atHalf+1:end-1); 
temp = flipud(temp); 
x(atHalf+1:end-1) = temp; 
x = x'; 
ys = zeros(max(size(x)),1); 
theta = zeros(max(size(x)),1)-100; 
for i=1:length(ys) 



% so do this with a rotation first 

about the y axis of whatever theta we 
% want, and then translate 
% we need homogenous coordinates for 

this too just FYI, so this might be a 
% beezy but whatever 
numPointsInSlice = 

(theta_range/theta_step + 1) * 

(r_range/r_step + 1); 
%divide up each into slices 
totalSlices = numPoints / 

numPointsInSlice; 
%ok now we have to loop through each 

slice, splitting it up, rotating it, 
%transforming it, and then putting 

the data back in 
%get all x, y, and theta's 
[xs, zs, thetas] = 

getPosOnArch(big_radius,s_step,false)

; 
xs = xs'; 
for currentSlice=1:totalSlices 
    %get the rotation matrix for this 

part 
    p = thetas(currentSlice,1); 
    rotAmount = 2*pi-p; 

     
    rotMatrix = [   cos(rotAmount)      

0   sin(rotAmount)  ; 
                    0                   

1   0               ; 
                    -sin(rotAmount)     

0   cos(rotAmount)  ]; 
    %     pause 
    %also get the translation matrix 

for this 

     
    %we need to translate none in the 

y, but a certain amount in 
    %z and a certain amount in x 

     
    %the radius is just big_radius. 

the x amount is 
    %cos(phi) * big_radius, 
    %Z amount is sin(phi) * 

big_radius 

     
    xAmount = xs(currentSlice,1); 
    zAmount = zs(currentSlice,1); 

     
    tMatrix = [ 1        0          0       

xAmount; 
                0        1          0       

0; 
                0        0          1       

zAmount; 

    if(x(i)<=big_radius) 

         
        center = 0; 

         
        ys(i) = sqrt(big_radius^2-x(i).^2); 

         
        theta(i) = atan(ys(i)./x(i)); 

         
        if(theta(i) > 0) 
            theta(i) = theta(i) - pi; 
        end 

         
        if(theta(i) == 0 && x(i) > 0) 
            theta(i) = -pi; 
        end 

  
    else 
        %if not, subtract the second big 

radius and flip it 
        ys(i) = -sqrt(big_radius^2-

(big_radius*2-x(i)).^2); 

         
        center = (big_radius*2); 
        theta(i) = atan(-ys(i)./(center-

x(i))); 

         
        if(theta(i) > 0) 
            theta(i) = theta(i) - pi; 
        end 

         
    end 
end 
if(should_plot) 
    figure(2) 
    clf 
    plot(x,ys) 
end 
end 
%plot3(gNodeToCoord(:,1),gNodeToCoord(:,2),g

NodeToCoord(:,3),'b*'); 
edge = -big_radius*2 - r_end; 
edge2 = -big_radius-r_end; 
axis([edge2, -edge2+big_radius*2, edge, -

edge, edge, -edge]) 
pause 
%now go through and do connectivity 
%we need the number of elements now 

strangely enough... 
%num elements is the same as the number of 

elements per slice 
%times the number of slices. so. 
numElementsPerSlice = r_range/r_step; 
numSlices = theta_range/theta_step; 
numElements = numElementsPerSlice*numSlices; 
connectMap = zeros(numElements,8); 



                0        0          0       

1;]; 
%     pause 
    %ok so now go through and 

translate each one of these coords 

     
    startNode = 

numPointsInSlice*(currentSlice-1) + 

1; 
    endNode = 

startNode+numPointsInSlice-1; 

     
    for i=startNode:endNode 
        x = gNodeToCoord(i,1); 
        y = gNodeToCoord(i,2); 
        z = gNodeToCoord(i,3); 

         
        vector = [x; y; z]; 

         
        vector = rotMatrix*vector; 

         
        homoVec = [vector;1]; 

         
        homoVec = tMatrix*homoVec; 

         
        newX = homoVec(1,1); 
        newY = homoVec(2,1); 
        newZ = homoVec(3,1); 

         
        gNodeToCoord(i,1) = newX; 
        gNodeToCoord(i,2) = newY; 
        gNodeToCoord(i,3) = newZ; 

         
    end 

     

     
end 

 
 

 

%make the connectivity map 
%start with sliceCounter and sideCounter 
elementCounter = 1; 
%REALLY BAD VARIABLE NAMING FOLLOWS 
for sCounter=1:totalSlices-1 
    for sliceCounter=1:numSlices 
        for 

sideCounter=1:numElementsPerSlice 
            %get the lower left 
            LL = sideCounter + 

(sliceCounter-1)*(numElementsPerSlice+1) + 

(sCounter-1)*numPointsInSlice; 
            LR = LL + 1; 
            UL = sideCounter + 

(sliceCounter)*(numElementsPerSlice+1) + 

(sCounter-1)*numPointsInSlice; 
            UR = UL + 1; 

             
            LLU = LL + numPointsInSlice; 
            LRU = LR + numPointsInSlice; 
            ULU = UL + numPointsInSlice; 
            URU = UR + numPointsInSlice; 
            %plot this 
            if(shouldPlot) 
                xs = [gNodeToCoord(LL,1) 

gNodeToCoord(LR,1) ... 
                      gNodeToCoord(LR,1) 

gNodeToCoord(UR,1) ... 
                      gNodeToCoord(UR,1) 

gNodeToCoord(UL,1) ... 
                      gNodeToCoord(UL,1) 

gNodeToCoord(LL,1) ... 
                      gNodeToCoord(LL,1) 

gNodeToCoord(LLU,1) ... 
                      gNodeToCoord(LLU,1) 

gNodeToCoord(LRU,1) ... 
                      gNodeToCoord(LRU,1) 

gNodeToCoord(LR,1) ... 
                      gNodeToCoord(LR,1) 

gNodeToCoord(LRU,1) ... 
                      gNodeToCoord(LRU,1) 

gNodeToCoord(URU,1) ... 
                      gNodeToCoord(URU,1) 

gNodeToCoord(UR,1) ... 
                      gNodeToCoord(UR,1) 

gNodeToCoord(URU,1) ... 
                      gNodeToCoord(URU,1) 

gNodeToCoord(ULU,1) ... 
                      gNodeToCoord(ULU,1) 

gNodeToCoord(UL,1) ... 
                      gNodeToCoord(UL,1) 

gNodeToCoord(ULU,1) ... 
                      gNodeToCoord(ULU,1) 

gNodeToCoord(LLU,1) ... 
                       ]; 
                ys = [gNodeToCoord(LL,2) 



gNodeToCoord(LR,2) ... 
                      gNodeToCoord(LR,2) 

gNodeToCoord(UR,2) ... 
                      gNodeToCoord(UR,2) 

gNodeToCoord(UL,2) ... 
                      gNodeToCoord(UL,2) 

gNodeToCoord(LL,2) ... 
                      gNodeToCoord(LL,2) 

gNodeToCoord(LLU,2) ... 
                      gNodeToCoord(LLU,2) 

gNodeToCoord(LRU,2) ... 
                      gNodeToCoord(LRU,2) 

gNodeToCoord(LR,2) ... 
                      gNodeToCoord(LR,2) 

gNodeToCoord(LRU,2) ... 
                      gNodeToCoord(LRU,2) 

gNodeToCoord(URU,2) ... 
                      gNodeToCoord(URU,2) 

gNodeToCoord(UR,2) ... 
                      gNodeToCoord(UR,2) 

gNodeToCoord(URU,2) ... 
                      gNodeToCoord(URU,2) 

gNodeToCoord(ULU,2) ... 
                      gNodeToCoord(ULU,2) 

gNodeToCoord(UL,2) ... 
                      gNodeToCoord(UL,2) 

gNodeToCoord(ULU,2) ... 
                      gNodeToCoord(ULU,2) 

gNodeToCoord(LLU,2) ... 
                       ]; 

                    

                    
                zs = [gNodeToCoord(LL,3) 

gNodeToCoord(LR,3) ... 
                      gNodeToCoord(LR,3) 

gNodeToCoord(UR,3) ... 
                      gNodeToCoord(UR,3) 

gNodeToCoord(UL,3) ... 
                      gNodeToCoord(UL,3) 

gNodeToCoord(LL,3) ... 
                      gNodeToCoord(LL,3) 

gNodeToCoord(LLU,3) ... 
                      gNodeToCoord(LLU,3) 

gNodeToCoord(LRU,3) ... 
                      gNodeToCoord(LRU,3) 

gNodeToCoord(LR,3) ... 
                      gNodeToCoord(LR,3) 

gNodeToCoord(LRU,3) ... 
                      gNodeToCoord(LRU,3) 

gNodeToCoord(URU,3) ... 
                      gNodeToCoord(URU,3) 

gNodeToCoord(UR,3) ... 
                      gNodeToCoord(UR,3) 

gNodeToCoord(URU,3) ... 
                      gNodeToCoord(URU,3) 

gNodeToCoord(ULU,3) ... 



                      gNodeToCoord(ULU,3) 

gNodeToCoord(UL,3) ... 
                      gNodeToCoord(UL,3) 

gNodeToCoord(ULU,3) ... 
                      gNodeToCoord(ULU,3) 

gNodeToCoord(LLU,3) ... 
                       ]; 
                line(xs,ys,zs); 
                hold on; 
                %axis([-3 3 -3 3]); 
                %pause(0.05*sCounter); 
                %pause(0.01); 
            end 
            connectMap(elementCounter,:) = 

[LL LR UR UL LLU LRU URU ULU]; 
            elementCounter = elementCounter 

+ 1; 
        end 
    end 
end 
end 

 
 

 


