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Background: 

 Particle simulators have been implemented many times over the history of 

computing and have been used for a wide range of applications from animation 

generation, molecule analysis, galaxy formation research, videogames, and even 

some forms of art[1]. My final project “GSim” set out to create a gravity particle 

simulator that supported user interaction, file import / export, and intuitive 

navigation to deliver an enlightening (and fun) user experience. 

 Education in schools has recently been trending towards providing a more 

interactive, individualized experience for each student through the use of 

technology[2]. Gravity itself is a particular example where live interaction can really 

enhance student learning in the classroom, especially since all students come in 

with a pre-conceived notion of gravity as a constant force. If we can show our 



students the mutual attraction nature of gravity through the use of a simple GUI 

application like GSim, we can both inspire students to pursue the sciences and 

enhance the learning experience. 

 

Description of Project: 

 GSim is a gravity particle simulator that is capable of simulating dozens of 

particles while interacting with the user in an intuitive way. It uses a Verlet 

integration scheme to preserve the energy of the simulated system and employs a 

set of 3-2-1 Euler angles for camera orientation in space. User interaction for 

selecting particles is as natural as a mouse click, and the insertion procedure for 

particles only requires a few click-drags to specify position, mass, and velocity. 

 GSim simulates all particles in three full dimensions, unlike many web-based 

particle simulators that exist today. It’s closest relative is Universe Sandbox®  

available on Steam, a commercially successful game that allows users to simulate 

universe creation and destruction. GSim aims to recreate this experience for free. 

 

Implementation: 

 The implementation of this project was mainly divided into three categories: 

integration method, camera navigation, and user interaction in 3D. The rest of the 

implementation was fairly standard object-oriented programming with extra 

methods to render the scene, calculate particle trails, perform file input/output, and 

other miscellaneous tasks. 

 

3.1:  Integration Method 

 

Euler integration, Runge-Kutta integration, Midpoint integration, and many 

other explicit integration schemes are widely popular in ODE-solving (like ode45 in 

Matlab) and are easy to implement. Their main drawback is that they do not 

preserve the mechanical energy of the system (in both potential and kinetic form). 

The mathematical proof of this is quite rigorous, but proof-by example is easy to 

demonstrate (and was covered in class as well). The summary of the shortcoming of 

these integration methods is that they assume the acceleration is constant over a 

given timestep, when acceleration is commonly a function of position (like in 

systems with springs or gravity). In these systems, the acceleration of a particle 

actually changes constantly throughout time, so an explicit integration method will 



always over-estimate (or under estimate) the acceleration during the timestep and 

either add or subtract energy to the system. The simplest example of this is Euler 

integration with a simple spring-mass system, where the acceleration estimate will 

always be an overestimate on one side and an underestimate on the other. This 

leads to energy addition through time, causing the system to “blow up” or lose 

stability. 

The Verlet integration scheme overcomes this simulation obstacle by making 

the calculation for the next velocity a function of current velocity, the current 

acceleration, and the acceleration at the next timestep forward. If acceleration is 

dependent on velocity (e.g. drag in fluid simulation), this requires the additional 

overhead of an implicit equation solver. If acceleration is instead simply a function 

of position, this integration scheme reduces to a simple “leapfrog” integration 

method. 

Because of this acceleration calculation difference, Verlet integration actually 

maintains the energy of dynamic systems and leads to very stable behavior during 

simulation. In my implementation of GSim, you can both integrate forward in time 

and backwards in time with variable timesteps. Because of my choice of integration 

method, one can integrate forward for several minutes, pause, integrate backwards 

with a different timestep, and arrive at the exact same system configuration as 

before. 

 

3.2:  3-2-1 Set of Euler Angles 

 

 Camera orientation and navigation represent a non-trivial problem to 

overcome with computer graphics simulation. An additional difficulty with this is 

that the OpenGL community recommends loading from identity for each frame draw 

(both to simplify drawing within the scene and to eliminate memory overflow 

problems with the matrix stack). Thus, a navigation and orientation method must be 

produced that allows intuitive translation and orientation in 3D space, has a 

constant memory overhead, performs in constant time, and is capable of orienting 

the camera from the original configuration on every frame draw. 

 The main challenge with intuitive interaction is that all changes in 

orientation and position are relative to the current reference frame. When a user 

presses the left or right arrow keys to yaw, he or she wants to yaw about whatever 

direction is “up” for the camera in the current configuration, not the actual positive z 

axis in the world space. This presents a considerable challenge, for the up 

“direction” can be any vector in 3D space (since the user can orient themselves to 

any configuration). In planar 2D motion (in 3D space) in applications like first-



person and third-person shooters, this problem becomes less challenging because 

the user is limited to two rotations (yaw and pitch) and two translations (within the 

plane). Thus, simple variables can keep track of the current orientation, and one 

rotation in yaw will never affect the pitch variable. This is not true for actual 3D 

motion, hence the challenge to overcome. 

 Fortunately for me I am concurrently enrolled in ME 175, the mechanical 

engineering class of Intermediate Dynamics taught by Professor Oliver O’Reilly (a 

distinguished professor and winner of four teaching awards at Berkeley). In class, 

Professor O’Reilly presented and discussed a paper on rocket navigation that uses 

one gyroscope and accelerometer for each of the three principle axes of the rigid 

body. One of the main results of the paper was the determination of the rate of 

change of each Euler angle given a measured angular velocity about each principle 

Euler basis vector. This result essentially relates the local angular velocity to the 

global Euler angle rate of change. This is the exact relation I needed, for I wanted to 

allow the user to specify local angular velocities to navigate while maintaining a 

global system of positioning. This relation is provided below: 

 

 
 

Although this equation was used for a quite different application, it had 

direct use in my camera orientation and navigation method. The main 

computational flow for the navigation and orientation for the camera is described 

below: 

 

1. Allocate a translation vector, three Euler angles, and three basis 

vectors into memory. 

a. The three basis vectors will be described as e1, e2, and e3 (as 

in common notation). 

b. For the camera, the e1 direction will be looking “forward” into 

the screen, the e2 direction will be the horizontal direction in 

the plane of the screen, and the e3 direction will be the vertical 

direction in the plane of the screen. 



2. Initialize the Euler angles and translation vector to a default starting 

value in order to “point” the user at the origin. 

3. Calculate the three Euler basis vectors based on the concatenation of 

the 3-2-1 Euler angle rotations. Essentially, combine the yaw, pitch, 

and roll rotation matrices into a combined rotation matrix. 

4. Multiply this combined rotation matrix into the three axis vectors (X, 

Y, and Z) to obtain the Euler basis vectors. 

5. In order to orient the camera, use the OpenGL utility “lookAt” 

command that takes in a camera position, a “look at” position, and a 

roll amount: 

a. Calculate the position by specifying the orientation vector 

b. Calculate the “lookat” position by adding the e1 “looking 

forward” vector to the translation vector to obtain a point 

forward from the camera. 

c. Specify the roll by providing the e3 vertical direction of the 

camera. 

6. When a user specifies a translation by using the WASD, Q, and 

spacebar keys, add small fractions of the three basis vectors (one for 

each desired direction) to the translation vector to move the camera 

but preserve orientation. 

7. To change the orientation and preserve translation, allow the user to 

specify a local yaw, local pitch, or local roll by pressing one of the 

arrow keys or the + and – keys. 

a. This keypress translates to inducing an angular velocity about 

one of the three Euler basis vectors. 

b. Take each one of these specified angular velocities and 

calculate the corresponding change in the three Euler angles as 

prescribed by the paper result. 

c. Combine these Euler angle changes together to get a net rate of 

Euler angle change. 

d. Integrate this change in time, and calculate the three new Euler 

angles. 

8. Repeat part 3 until program exit. 

 

The above implementation gives an orientation scheme that allows intuitive 

translation and orientation of the camera while preserving a global positioning 

system loading from identity on each frame, using constant memory, and 

performing in constant time. 



Additionally, this orientation scheme retains the orthogonality of the rotation 

matrix (an issue for the method presented in class) in addition to avoiding 

numerical error buildup. The main drawback of Euler angles is the gimbal-lock 

scenario where two axes become aligned and a loss of a degree of freedom occurs. If 

a user navigates into gimbal-lock and then tries to rotate about a degree of freedom 

that has been lost, another entirely different motion will occur instead. For example, 

if one were to pitch all the way down to 90 degrees and then attempt to yaw, the 

camera would instead roll because those two axes are now co-linear and anti-

parallel. 

My orientation method overcomes this issue entirely because the 

orientation is calculated from identity for each frame draw. A 3-2-1 set of Euler 

angles can represent any orientation; the only problem arises when one tries to 

navigate away from a gimbal-lock scenario. Because my method never interpolates 

between Euler angle representations and instead recalculates the configuration 

every time, it avoids any gimbal lock issues and thus eliminates the main drawback 

of Euler angles. 

Furthermore, the key feature of this orientation scheme is that it allows one 

variable (the psi angle) to describe the local yaw amount of the camera. Because the 

3-2-1 set of Euler angles only yaws once (and it yaws before any other rotation 

occurs), the psi angle can be easily used to describe the amount of yaw in the 

current orientation. Only this amount of yaw affects the angle of the XZ plane to the 

camera, which is absolutely critical for the later ray-picking method for user 

interaction. 

In conclusion, the orientation and navigation method was the main objective 

to overcome when programming GSim and my proudest result from this project. A 

video of this navigation is available on Youtube via the link given in the appendix. 

 

3.3  Graphic interaction in 3D space for particle insertion, mass selection, 

and velocity. 

 

 Once the orientation and navigation method was implemented, I next needed 

a way to allow the user to interact with the simulation. This included three separate 

interactions: selecting a particle for deletion, launching a particle with a random 

velocity from the current position, and inserting a particle in 3D space. 

 All of these interactions use a simple ray-picking method that utilizes the 

OpenGL “unProject” utility function. A mouse coordinate is mapped into 3D space on 

both the near and far drawing planes. These two coordinates then form a ray (with a 

start location and direction). This ray is then used for the three interactions. 



 The first “selection” interaction uses the ray sphere intersection test to find 

the closest sphere along this way. Once this sphere is found, it is “selected” and this 

selection is represented by a rotating torus around its body. The user then can 

either delete this particle with the delete key or de-select it by clicking it again. 

 The second “launch random particle” interaction is also easy, for it uses the 

ray origin position as the position for a new particle. This is then supplemented by a 

simple random velocity. 

 The third particle insertion interaction is far more complicated. It involves 

specifying a position, a velocity, and a mass for a given particle. This represents 

seven different variables that have to be calculated from a minimal amount of user 

interaction. Additionally, the difficulty with mouse interaction in 3D space is that 

there is no way of easily determining how “far” away the click was meant to be. 

 My implementation of this was inspired by Google Sketchup which assumes a 

default “intersection plane” depending on orientation. I intersect all mouse clicks 

with the XZ or YZ plane that intersects the origin. Additionally, I choose between the 

XZ or YZ plane depending on the psi “yaw” variable from the orientation scheme, 

allowing for a very easy way to determine which plane the user wants depending on 

their orientation. Because both intersect planes are co-planar with the yaw vector, 

these two planes are easily differentiated with a single variable. 

 Position, mass, and velocity each have a graphical representation during the 

insertion process. Position is represented by the position on the screen (obviously) 

and also a large torus centered at the origin that gives a sense of scale to the radius. 

The mass is relative to the volume of the particle, and a cone represents the velocity. 

The orientation of the cone describes the direction of the velocity and the width 

describes the magnitude. With these three elements and the plane intersection with 

the ray picking, user interaction with GSim is natural and frictionless. 

 
Results: 

 After implementation was complete, I had a gravity simulator that was quite 

fun to play with and also educational about the laws of gravitational attraction. I 

tested the user interaction by asking several of my friends to insert a particle with 

no further instruction. After the first click, people realize a position is being 

modified and then move to where they want the particle to be. The second two 

clicks are equally natural for mass and velocity, and then the particle fires off once 

it’s completely selected. It brought a smile to my face to see 3D interaction being so 

intuitive in a program I wrote. I am also offering up the source of this project on 



Github in hopes that someone will fork the project and expand on it (or perhaps give 

it to a teacher to use in class). 

 In conclusion, I am pleased with my final project and specifically pleased 

with the ways I overcame implementation challenges. 
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Appendix: 

 It is estimated that an entire kilogram of carbon dioxide is produced for the 

manufacturing and delivery of a compact disc[3]. In order to strive for a carbon-

neutral educational environment, I have made the video that accompanies this 

project report available online at Youtube via the link below: 

 

http://youtu.be/r_68uPETMJk 

 
Google’s data centers are industry leaders in Green technology, and it is my 

hope that this video can serve wider audiences while maintaining a minimum 

carbon footprint. 
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